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Abstract

The rates of heat transfer for flow through a sinusoidally curved converging–diverging channel has been analyzed

using a simple coordinate transformation method and the spline alternating-direction implicit method. The effects of the

wavy geometry, Reynolds number and Prandtl number on the skin-friction and Nusselt number have been studied.

Results show that the amplitudes of the Nusselt number and the skin-friction coefficient increase with an increase in the

Reynolds number and the amplitude–wavelength ratio. The heat transfer enhancement is not significant at smaller

amplitude wavelength ratio, however, at a sufficiently larger value of amplitude wavelength ratio the corrugated

channel will be seen to be an effective heat transfer device, especially at higher Reynolds numbers. � 2002 Published by

Elsevier Science Ltd.
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1. Introduction

The corrugated wall channel is one of several devices

employed for enhancing the heat transfer efficiency of

industrial transport processes. The problem of viscous

flow in wavy channels was first treated analytically by

Burns and Parks [1], who expressed the stream function

as a Fourier series under the assumption of Stokes flow.

Following this, Goldstein and Sparrow [2] were the first

to use the naphthalene technique to measure local and

average heat transfer coefficients in a corrugated wall

channel (with ‘triangular waves’). Their experiments in

laminar, transitional and turbulent flows used two cor-

rugation cycles (i.e. two wavelengths). They observed

secondary flows in the regions of high resolution local

mass transfer measurement, and comparison of their

results with those obtained with parallel-plate channels

showed a threefold enhancement in the average heat

transfer in the turbulent regimes. However, there was an

even greater penalty in the pumping power required. In

order to avoid the entrance effect, O’Brien and Sparrow

[3] performed a complete study on the same geometry

with more corrugation cycles. Result shows that a heat

transfer enhancement by a factor of about 2.5 over a

conventional straight channel was observed in fully de-

veloped region.

In 1993, Saniei and Dini [4] experimentally study heat

transfer characteristics in the turbulent regime for a

wavy-wall channel. They found that the maximum local

Nusselt number was located upstream of the peak of

each wave, while the minimum local Nusselt number was

located downstream, within a short distance of the peak

of each wave. They determined that the highest average

Nusselt number belongs to the second wave and that the

Nusselt number remains constant downstream of the

third wave as a result of the flow being fully developed

periodically. In recent numerical simulations, Wang and

Vanka [5] determined the rates of heat transfer for a flow

through a periodic array of wavy passages. They ob-

served that in the steady-flow regime, the average Nusselt

numbers for the wavy-wall channel were only slightly

larger than those for a parallel-plate channel. However,

in the transitional-flow regime, the enhancement of heat

transfer was by a factor of approximately 2.5. Friction

factors for the wavy channel were about twice those for

the parallel-plate channel in the steady-flow region, and

remained almost constant in the transitional regime.

More recently, the experimental study of flows and heat

transfer in sinusoidal wavy passages was conducted by
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Rush et al. [6]. Using visualization methods, the flow field

was characterized as steady or unsteady, with special

attention directed towards detecting the onset of mac-

roscopic mixing in the flow. The location of the onset of

mixing was found to depend upon the Reynolds number

and the channel geometry.

Although some studies for steady and unsteady flows

have been reported, e.g. [7–10], little knowledge is

available on the flow in these wavy channels. The study

presented in this paper employs a simple coordinate

transformation method to transform a complex wavy

channel into a parallel-plate channel. The equations

obtained are then solved using the spline alternating-

direction implicit (SADI) method. Since the SADI

method can evaluate the spatial derivative terms directly

without any finite difference discretization, the gradient

boundary conditions may be represented more accu-

rately, and irregular boundaries are easier to deal with.

The effects of the Reynolds number, the Prandtl number

and the dimensionless amplitude of the wavy surface on

the skin-friction coefficient and Nusselt number have all

been examined in this study.

2. Mathematical formulation

In this study, flow in a symmetric wavy-wall channel

was analyzed, as shown in Fig. 1. The working fluid was

assumed to be Newtonian fluid with constant fluid

properties, and the flow was considered to be laminar,

incompressible, steady and two-dimensional. Viscous

dissipationwas neglected, because it has a negligible effect

(see [11]). The above assumptions were designed to keep

the theoretical model as simple as possible. For forced

convection, the fluid and thermal fields are governed by

the dimensionless equations of stream function, vorticity

transport and energy. These may be written in the form

r2w ¼ �x; ð1Þ

u
ox
o�xx

þ v
ox
oy

¼ 1

Re
r2x; ð2Þ

u
oh
ox

þ v
oh
oy

¼ 1

Re Pr
r2h; ð3Þ

where

x ¼ ov
ox

� ou
oy

; u ¼ ow
oy

; v ¼ � ow
ox

;

r2 ¼ o2

ox2
þ o2

oy2
ð4Þ

Nomenclature

a amplitude of wavy surface

Cf skin-friction coefficient

Cp specific heat of fluid at constant

pressure

h heat transfer coefficient

Kf thermal conductivity

L half separation distance between wavy

walls

Nu�xx;Num local Nusselt number and average

Nusselt number, respectively

Pr Prandtl number

Re generalized Reynolds number

S surface geometry function

T temperature

u; v x and y velocity components,

respectively

Um average velocity

x; y axial and transverse (Cartesian)

coordinates, respectively

Greek symbols

a wavy amplitude–wavelength ratio

l dynamic viscosity

h dimensionless temperature

q density of fluid

r distance measured along surface from

wavy wall

sw skin-friction

x vorticity

n; g transformed coordinates

w stream function

Superscripts

– dimensional quantity
0 derivative with respect to x

Subscripts

e end point of wavy wall

m mean value

s start point of wavy wall

w surface conditions

x local value

Fig. 1. Physical model, coordinates and grid system.
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and the dimensionless quantities are defined:

x ¼ �xx
L
; y ¼ �yy

L
; a ¼ �aa

L
; SðxÞ ¼

�SSð�xxÞ
L

;

u ¼ �uu
Um

; v ¼ �vv
Um

; x ¼ �xxL
Um

; w ¼
�ww

UmL
;

h ¼ T � T0

Tw � T0

; Re ¼ qUmL
l

; Pr ¼ lCp

Kf

: ð5Þ

Note that Um is the average mean velocity in the wavy

channel. �uu and �vv are the components of the velocity in

the �xx and �yy directions. q, l and T are the density, vis-

cosity and temperature of the fluid. Kf and Cp are the

thermal conductivity and the specific heat of the fluid at

constant pressure.

It is assumed that the axis of symmetry is aligned

with the oncoming fully developed Poiseuille flow. As

will be seen in Fig. 1, the shape of the low wavy-wall

profile in the region �xxs 6�xx6�xxe is given as

�SSð�xxÞ ¼ �L� �aa sin pð�xx
h

� �xxsÞ=L
i
; ð6Þ

where �xxs and �xxe are the start and end points of the wavy-

wall channel, respectively, and �aa is the amplitude of the

wavy surface. Furthermore, it is assumed that the tem-

perature of the wavy surface is held at a constant value

Tw, which is higher than the entrance fluid temperature

T0. Thus, the corresponding boundary conditions are

considered as follows:

1. At the wavy surface ½y ¼ �SðxÞ	:
w ¼ �1; u ¼ v ¼ 0; ð7Þ

h ¼ 1 for xs 6 x6 xe; ð8Þ

oh
oy

¼ 0 for x < xs or xP xe: ð9Þ

2. At the symmetric axis of channel (y ¼ 0):

w ¼ x ¼ 0;
oh
oy

¼ 0: ð10Þ

3. At the inlet section ðx ¼ 0Þ:

w ¼ 3

2
y

�
� y3

3

�
; x ¼ 3y; h ¼ 0: ð11Þ

4. At the outlet section (x ! 1):

ow
ox

¼ 0;
ox
ox

¼ 0;
oh
ox

¼ 0: ð12Þ

In order to resolve the irregular boundary, we define

new variables by eliminating the effect of the wavy sur-

face. The transformed coordinates are

n ¼ x; g ¼ y
SðxÞ : ð13Þ

Therefore, by substituting Eq. (13) into Eqs. (1)–(4), the

governing equations are transformed a wavy-wall

channel into a parallel-plate channel. The transformed

equations are given as

r2w ¼ �x; ð14Þ

u
ox
on

�
þ gx

ox
og

�
þ vgy

ox
og

¼ 1

Re
r2x; ð15Þ

u
oh
on

�
þ gx

oh
og

�
þ vgy

oh
og

¼ 1

RePr
r2h; ð16Þ

where

u ¼ gy
ow
og

; v ¼ � ow
on

�
þ gx

ow
og

�
;

x ¼ ov
on

þ gx
ov
og

� gy
ou
og

;

r2 ¼ o2

on2
þ g2

x

�
þ g2

y

� o2

og2
þ 2gx

o2

onog
þ gxx

�
þ gyy

� o

og
;

gy ¼
1

SðxÞ ; gx ¼
�yS0ðxÞ
S2ðxÞ ;

gxx ¼
y 2S02 � SS 00� �

S3ðxÞ ; gyy ¼ 0: ð17Þ

The nonlinear elliptic equations (14)–(17) must be solved

subject to the following boundary conditions:

(a) At the wavy surface (g ¼ �1):

w ¼ �1; u ¼ v ¼ 0; ð18Þ

h ¼ 1 for ns 6 n6 ne; ð19Þ

oh
og

¼ 0 for n < ns or n P ne: ð20Þ

(b) At the symmetric axial of channel (g ¼ 0):

w ¼ x ¼ 0;
oh
og

¼ 0: ð21Þ

(c) At the inlet section (n ¼ 0):

w ¼ 3

2
g

�
� g3

3

�
; x ¼ 3g; h ¼ 0: ð22Þ

(d) At the outlet section (n ! 1):

ow
on

¼ 0;
ox
on

¼ 0;
oh
on

¼ 0: ð23Þ

Once the flow and the temperature fields have been

obtained, several important quantities can be calculated,

as presented below.

The local Nusselt number at the surface of the wavy-

wall channel is defined as:

Nu�xx ¼
h�xxL
Kf

¼ �ðoT=onÞL
Tw � T0

; ð24Þ
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where

oT
on

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oT
o�xx

� �2

þ oT
o�yy

� �2
s

ð25Þ

and o=on represents the differentiation with respect to

the coordinate normal to the surface. The axial distri-

bution of Nux can be given as

Nux ¼ g2
x

�
þ g2

y

�1=2 oh
og

: ð26Þ

The average Nusselt number is defined as

Num ¼ hmL
Kf

�rr
�xx
: ð27Þ

It should be noted that the average Nusselt values are

obtained by averaging the heat transfer over the surface

from the start point of the wavy wall to rðxÞ. Thus, the

value of Num may be calculated as

Num ¼ 1

n � ns

Z n

ns

1
�

þ S02�1=2 g2
x

�
þ g2

y

�1=2 oh
og

dn; ð28Þ

where

hm ¼ qm

Tw � T0

; ð29Þ

qm ¼ 1

�rr

Z �rr

xs

�Kf

oT
on

d�rr; ð30Þ

�rr ¼
Z x

xs

1
�

þ �SS02
�1=2

d�xx: ð31Þ

Finally, the shear force at the surface is

sw ¼ l
o�uu
o�yy

 
þ o�vv
o�xx

!
�yy¼�SSð�xxÞ

: ð32Þ

And the skin-friction coefficient, Cf , may be defined as

Cf ¼
sw

qU 2
m

: ð33Þ

Substitution of Eq. (32) into Eq. (33) yields

Re Cf ¼ ½g2
y � g2

x 	
o2w
og2

: ð34Þ

3. Numerical method

The dimensionless governing differential equations

(14)–(16), combined with the relevant boundary condi-

tions (18)–(23), are solved numerically using the spline

alternating-direction implicit method [12,13]; an im-

proved version of the cubic spline collocation method

[14]. Using the false transient technique, Eqs. (14)–(16)

may be transformed as

wnþ1
i;j � wn

i;j

Ds
þr2wi;j ¼ �xn

i;j; ð35Þ

xnþ1
i;j � xn

i;j

Ds
þ u lnþ1

w

�
þ gxm

n
w

�
þ vgym

n
w ¼ 1

Re
r2xi;j; ð36Þ

hnþ1
i;j � hn

i;j

Ds
þ u lnþ1

h

�
þ gxm

n
h

�
þ vgym

n
h ¼

1

RePr
r2hi;j;

ð37Þ

where

u ¼ gym
n
w; v ¼ � lnþ1

w

�
þ gxm

n
w

�
;

r2 ¼ Lnþ1
/ þ ðg2

x þ g2
yÞMnþ1

/ þ 2gx

ðl/Þni;jþ1 � ðl/Þni;j�1

2Dg

þ ðgxx þ gyyÞmn
/;

l/ ¼ o/
on

; L/ ¼ o2/

on2
; m/ ¼ o/

og
; M/ ¼ o2/

og2

ð38Þ

and / represents refers to w, x or h. Ds ¼ snþ1 � sn

represents the false time-step.

Using the spline alternating-direction implicit meth-

od, Eqs. (35)–(37) may be expressed as

/nþ1
i;j ¼ Fi;j þ Gi;jlnþ1

i;j þ Si;jLnþ1
i;j ; ð39Þ

where i and j refer to the computational nodes and n

is the false time-step. Fi;j, Gi;j and Si;j are the known

coefficients evaluated at the previous time-step, as

shown in Table 1. Using cubic spline collocation re-

lations [14], Eq. (39) may be expressed in tri-diagonal

form

Ai;ju
nþ1
i;j þ Bi;ju

nþ1
i;j þ Ci;ju

nþ1
i;j ¼ Di;j; ð40Þ

where u represents w, x and h, or its first or second

derivatives. Equation (40) may be easily solved by the

Thomas algorithm.

The numerical procedure is as follows:

1. Establish suitable boundary conditions;

2. Apply the spline alternating-direction implicit meth-

od to solve (35)–(37) to obtain w, x and h;
3. Return to step 1 to calculate the results for the next

fictitious time-step. The solutions obtained are trea-

ted as steady-state solutions when the convergent cri-

teria are satisfied, i.e.

unþ1
i;j � un

i;j

unþ1
i;j

�����
����� < 1 � 10�5; ð41Þ

where n denotes the number of iterations.

4. When the steady state is reached, iteration is com-

plete.
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4. Results and discussion

Fig. 2 shows that an accuracy test of grid fineness is

made for grids of 360� 50, 180� 20 and 90� 10 at

Re ¼ 300, a ¼ 0:2 and Pr ¼ 6:93, n 2 ½0; 20	 and

g 2 ½�1; 0	. Comparing the grids of 90� 10 and

360� 50, it will be observed that although the skin-

friction coefficients of the two grids match very closely,

there are same discrepancies in the Nusselt numbers in

the furrow of each wave. This indicates that more grids

are required to resolve the temperature field, in order to

gain a better result for the Nusselt number. As will be

observed more clearly in Fig. 2, the results for grids of

180� 20 in this study are in good agreement with those

obtained by grids of 360� 50 for the skin-friction co-

efficient and local Nusselt number. Thus, as shown in

Fig. 1, a 180� 20 nonuniform grid with smaller spacing

mesh points in the neighborhood of the fluid–solid

boundary at g-direction is used in this study. In addi-

tion, numerical experiments were carried out to ensure

the independence of the results on the parallel-plate

length of the inlet and outlet. The results were obtained

for the lower surface described by SðnÞ ¼ �1�
a sinðpðn � 3ÞÞ at 36 n6 15 (i.e. six complete sinusoidal

waves) with different amplitude–wavelength ratios and

Reynolds numbers. Two different values of Prandtl

number Pr ¼ 6:93 and 0.71 were also considered.

Figs. 3–6 show the distributions of the local skin-

friction coefficient, streamlines, local Nusselt number

and average Nusselt number for three values of wavy

amplitude–wavelength ratios (i.e. a ¼ 0; 0:1 and 0.2)

when Re ¼ 500 and Pr ¼ 6:93. Fig. 3 shows that since

the entrance condition is fully developed flow, then, the

local skin-friction coefficient is constant at all locations

for a parallel-plate channel (i.e. a ¼ 0). In the case of

wavy-wall channel, with a wavy amplitude–wavelength

ratio, a, of 0.1, the harmonic curve for the local

skin-friction coefficient in the region of wavy channel

has the same frequency as that of the wavy surface, and

the maximum and minimum values occur precisely at

the locations of minimum and maximum cross-section

of the wavy-wall channel. As will be seen more clearly in

Fig. 4(a), since the flow reversal occurs between the

separated point ðn ¼ 5:1Þ and the reattachment point

Fig. 2. Distribution of skin-friction coefficient and local Nus-

selt number for different grid sizes at a ¼ 0:2, Re ¼ 300 and

Pr ¼ 6:93.

Table 1

Value of Fi;j;Gi;j, and Si;j

w Fi;j wn
i;j � Ds xnþ1

i;j

�
þ g2

x

�
þ g2

y

�
Mnþ1

w þ 2gx

ðlwÞni;jþ1 � ðlwÞni;j�1

2Dg
þ gxx

�
þ gyy

�
mn

w

�

Gi;j 0

Si;j �Ds

x Fi;j xn
i;j þ Ds

�
� gym

n
wgxm

n
w þ ðlnþ1

w þ gxm
n
wÞgym

n
w þ 1

Re
g2
x

��
þ g2

y

�
Mnþ1

x þ 2gx

ðlxÞni;jþ1 � ðlxÞni;j�1

2Dg

þ gxx

�
þ gyy

�
mn

x

��

Gi;j �Dsgym
n
w

Si;j Ds 1
Re

h Fi;j hn
i;j þ Ds

�
� gym

n
wgxm

n
h þ ðlnþ1

w þ gxm
n
wÞgym

n
h þ

1

RePr
g2
x

��
þ g2

y

�
Mnþ1

h þ 2gx

ðlhÞni;jþ1 � ðlhÞni;j�1

2Dg

þ gxx

�
þ gyy

�
mn

h

��

Gi;j �Dsgym
n
w

Si;j Dsð1=ðRePrÞÞ
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ðn ¼ 5:67Þ, the skin-friction coefficient is negative in the

furrow of the wavy-wall channel. In this paper, the lo-

cations of the separation and reattachment points are

determined from the sign of the near wall vorticity.

Moreover, as the wavy amplitude–wavelength ratio is

increased to 0.2 and to 0.3, the distance of the separated

and reattachment points also increases as shown in Figs.

4(a) and (b). It should be noted that the major region of

flow reversal causes the harmonic curves of the skin-

friction coefficient (show in Fig. 3) to become different to

the wavy surface in each furrow of the wavy-wall

channel. Thus, for a complete cycle (e.g. 4 < n < 6), the

maximum value is located at n ¼ 4:5, which is the min-

imum cross-section of the wavy surface, but the mini-

mum value is located at n ¼ 5:9, which is not at the

maximum section of the wavy surface ðn ¼ 5:5Þ.
Fig. 5 shows that the local Nusselt number is higher

in the converging section of each wave than in the di-

verging section (furrow). This is because the converging

section has a higher average velocity and velocity gra-

Fig. 3. Distribution of skin-friction coefficient for Re ¼ 500 and

Pr ¼ 6:93.

Fig. 4. Streamlines of flow for various amplitude–wavelength

ratios at Re ¼ 500 and Pr ¼ 6:93: (a) wmin ¼ �1:03059; a ¼ 0:1;

(b) wmin ¼ �1:00046; a ¼ 0:2; (c) wmin ¼ �1:01195; a ¼ 0:3.

Fig. 5. Distribution of local Nusselt number for Re ¼ 500 and

Pr ¼ 6:93.

Fig. 6. Distribution of average Nusselt number for Re ¼ 500

and Pr ¼ 6:93.
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dient, which increases the heat transfer ratio. Con-

versely, the flow reversal has a low velocity gradient near

the wall surface in each furrow, which decreases the heat

transfer ratio. Furthermore, the minimum local Nusselt

number is located upstream within a short distance of

the maximum section of each wave for a ¼ 0:1, and this

distance increases as the wavy amplitude–wavelength

ratio is increased to a ¼ 0:2. This is because as wavy

amplitude–wavelength ratio is increased, the strength of

the flow reversal also increases, and the separated point

moves closer to the minimum section of the wavy-wall

channel.

As shown in Eq. (28), the average Nusselt values may

be obtained by averaging the heat transfer over a sur-

face, which is based on the total area of each wave, and

not on projected area, from the start point of the wavy

surface to rðxÞ. From the standpoint of the average

Nusselt number as shown in Fig. 6, it appears that the

highest average Nusselt numbers belongs to the first

wave and that the Nusselt number stays uniform

downstream of the third wavy as a result of the flow

being periodically fully developed. The average Nusselt

value for a small amplitude–wavelength ratio, i.e.

a ¼ 0:1, does not increase too much than for a flat-wall

channel. This is because the Nusselt number (see Fig. 5)

in the diverging section of each wave makes only a rel-

atively small contribution. However, higher wavy am-

plitude–wavelength ratios (a ¼ 0:2 and 0.3) result in

higher average Nusselt numbers. This result may also be

explained from Fig. 5. The amplitude of the Nusselt

number increases with wavy amplitude–wavelength ra-

tio, and the quantity of the Nusselt number will also

increase. Both inferences are manifest in the converging

section of the wavy-wall channel and in a tiny change in

the diverging section.

Figs. 7–9 show the distribution of the local skin-

friction coefficient, local Nusselt number and average

Nusselt number for Re ¼ 100, 300 and 500, a ¼ 0:2, and
Pr ¼ 6:93. Figs. 7 and 8 show that the skin-friction co-

efficient and Nusselt number distribution have the

highest magnitude on the first wave, although the dis-

tributions of skin-friction and heat transfer follow the

same pattern for all corrugations. As the Reynolds

number increases, the amplitude of the skin-friction

coefficient and the local Nusselt number will also in-
Fig. 7. Distribution of skin-friction coefficient for a ¼ 0:2 and

Pr ¼ 6:93.

Fig. 8. Distribution of local Nusselt number for a ¼ 0:2 and

Pr ¼ 6:93.

Fig. 9. Distribution of average Nusselt number for a ¼ 0:2 and

Pr ¼ 6:93.
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crease. It should be noted that as the Reynolds number

is decreased from 500 to 100, the minimum skin-friction

coefficient of each wave increases and approaches the

zero. This indicates that the nonlinear convection terms

are relatively small compared with the diffusion effects

when the Reynolds number is less than 100. In addition,

although the reticulation zones increase in size when the

Reynolds number increases, the Nusselt number and the

skin-friction coefficient decrease slightly in the furrow of

each wave. Thus, with an increase in the Reynolds

number, the maximum values of the friction coefficient

and of the Nusselt number increase in each converging

section, but their minimum values remain almost con-

stant in the diverging section.

The distributions of average Nusselt number for

various Reynolds numbers are plotted in Fig. 9. The

maximum and minimum values of the average Nusselt

number occur almost at the minimum and downstream

maximum cross-sections of the wavy-wall channel. The

first wave shows a higher average heat transfer coeffi-

cient. As the axial coordinate increases, the amplitude of

the average Nusselt number decreases. This is to be ex-

pected since the average Nusselt number is obtained by

integrating the local Nusselt number distribution over

the area. The average Nusselt number is constant after

the third wave, i.e. as soon as the flow becomes peri-

odically fully developed. Also, a higher Reynolds num-

ber results in a higher average Nusselt number for all the

waves.

Figs. 10 and 11 show the variations in average Nus-

selt number with Reynolds number for different ampli-

tude wavelength ratios at Pr ¼ 6:93 and 0.71, and

include the limiting case of a flat surface (a ¼ 0) for

comparison purposes. The enhancement of heat transfer

with Reynolds number and wavy wall is clear. The av-

erage Nusselt numbers for the wavy-wall channel with a

smaller amplitude wavelength ratio, such as a ¼ 0:1, are
only slightly larger than those for a parallel-plate

channel. With a larger amplitude wavelength ratio, such

as a > 0:2, there is again no significant heat transfer

enhancement at low Reynolds numbers, but at a sig-

nificantly higher Reynolds number, the corrugated

channel is an effective heat transfer device. Additionally,

this effect of heat transfer increases with increasing

Prandtl number.

5. Conclusions

Forced convection for flow through a periodic array of

a wavy-wall channel has been investigated numerically. A

simple coordinate transformation method was employed

to transform the complex wavy-wall channel into a par-

allel-plate channel. The spline alternating-direction im-

plicit method was then used to solve the flow patterns and

the heat transfer characteristics. Effects of the wavy ge-

ometry, Reynolds number and Prandtl number on the

local skin-friction coefficients and Nusselt numbers were

studied. Results show that the flow through a periodic

array of a wavy-wall channel forms a highly complex flow

pattern, which comprises a strong forward flow and an

oppositely directed recirculating flowwith eachwave. The

harmonic curves for the local skin-friction coefficient and

the local Nusselt number have the same frequency as that

of the wavy surface at smaller wavy amplitude–wave-

length ratios or at lower Reynolds numbers. The major

region of flow reversal occurs at higher Reynolds num-

bers, and causes the harmonic curves of the skin-friction

coefficient and the Nusselt number to be different to the
Fig. 10. Variation of Nusselt number with Reynolds number

for different amplitude wavelength ratios at Pr ¼ 6:93.

Fig. 11. Variation of Nusselt number with Reynolds number

for different amplitude wavelength ratios at Pr ¼ 0:71.
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wavy surface in the diverging section of each wave. In the

converging section, the peaks of skin-friction coefficient

and Nusselt number occur near the peak of the wavy wall

and are independent of the amplitude–wavelength ratio

and theReynolds number. Theminimumquantities of the

skin-friction coefficient and of the Nusselt number are

located downstream and upstreamwithin a short distance

of the maximum section of each wave. Moreover, this

distance increases with increasing wavy amplitude–

wavelength ratio and Reynolds number. However, as the

wavy amplitude–wavelength ratio and the Reynolds

number increase, the local Nusselt number increases

manifestly in the converging section of the wavy-wall

channel and shows a small change in the diverging sec-

tion. Thus, at significantly larger amplitude wavelength

ratios, the corrugated channel is an effective heat transfer

device, especially for higher Reynolds numbers.
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